Типы связей теоретическая механика. Виды связей и их реакции. Система сходящихся сил

Тела, рассматриваемые в механике, могут быть сво­бодными и несвободными .

Свободным называют тело, которое не испытывает никаких препятствий для перемещения в пространстве в любом направлении. Если же тело связано с другими телами, которые ограничивают его движение в одном или нескольких направлениях, то оно является несвободным .

Тела, которые ограничивают движение рассматриваемого тела называют связями .

В результате взаимодействия между телом и его свя­зями возникают силы , противодействующие возможным движениям тела . Эти силы действуют на тело со стороны связей и называются реакциями связей.

Реакция связи всегда противоположна тому направле­нию, по которому связь препятствует движению тела.

Определение реакций связей является одной из наи­более важных задач статики. Ниже приведены наиболее распространенные виды связей, встречающиеся в меха­нике.

Связь в виде гладкой (т. е. без учета сил трения) плоскости или поверхности (рис.а, б ). В этом случае реакция связи всегда направлена по нормали к опорной поверхности .

Связь в виде шероховатой плоскости (рис. в ). Здесь возникают две составляющие реакции: нормальная N , перпендикулярная плоскости, и касательная Т , лежащая в плоскости. Касательная реакция Т называется силой трения и всегда направлена в сторону, противоположную действительному или возможному движению тела.

Полная реакция R , равная геометрической сумме нормальной и касательной составляющих

R =N + Т , отклоняется от нормали к опорной поверхности на некоторый угол ρ .

При взаимодействии тела с реальными связями возни­кают силы трения . Однако во многих случаях силы тре­ния незначительны и вследствие этого ими часто пренебре­гают , т. е. считают связи абсолютно гладкими .

Связи , в которых отсутствуют силы трения , называют идеальными . Приведенная выше связь в виде гладкой плоскости или поверхности относится к категории иде­альных .

Гибкая связь, осуществляемая веревкой, тросом, цепью и т. п. (рис. г ). Реакция гибкой связи направ­лена вдоль связи, причем гибкая связь может работать только на растяжение .

Связь в виде жесткого стержня с шарнирным закреп­лением концов (рис.д ). Здесь реакции, так же как и в гибкой связи, всегда направлены вдоль осей стерж­ней , но стержни могут быть как растянутыми, так и сжа­тыми .

Связь, осуществляемая ребром двугранного угла или точечной опорой (рис.е ). Реакция такой связи направлена перпендикулярно поверхности опирающегося тела, если эту поверхность можно считать гладкой .

Существование реакций связей обосновывается . Для определения реакций связей используют прием освобождения от связей.

Вот этот прием. Не изменяя равновесия тела или системы тел, каждую связь, наложенную на систему, можно отбросить, заменив ее действием реакции отброшенной связи.

1. Гладкая (без трения) плоскость или поверхность. Такие связи препятствуют перемещениям тела только в направлении общей нормали в точке касания, вдоль которой и будет направлена соответствующая реакция. Поэтому реакция гладкой плоской опоры перпендикулярна этой опоре (реакция на рис. 12,а); реакция гладкой стенки перпендикулярна этой стенке рис. 12, б); реакция гладкой поверхности направлена по нормали к этой поверхности, проведенной в точке касания на рис. 12, в).

2. Острый выступ. В этом случае можно считать, что опирается сам выступ, а опорой служит рассматриваемое тело. Это приводит к случаю 1 и выводу, что реакция гладкого выступа направлена по нормали к поверхности опирающегося тела (сила на рис. 12, в).

3. Гибкая связь (невесомые нить, трос, цепь и т.п.). Соответствующая реакция направлена вдоль связи от точки крепления нити к точке подвеса (сила на рис. 11,г, сила на рис. 12, б).

4. Невесомый прямолинейный стержень с шарнирами на концах. Реакция направлена вдоль стержня. Поскольку стержень может быть как сжат, так и растянут, реакция может иметь направление как к точке подвеса стержня, так и от точки подвеса (реакции и на рис. 13, а).

5. Невесомый коленчатый или криволинейный стержень. Реакция направлена вдоль прямой, проходящей через центры концевых шарниров (сила 53 на рис. 13, а; сила S на рис. 13, б).

6. Подвижная шарнирная опора. Реакция направлена перпендикулярно плоскости опоры (плоскости катания) (рис. 14, а, б).

7. Цилиндрический шарнир (рис. 15, а), радиальный подшипник (рис. 15, б). Реакция проходит через центр шарнира (центр срединного сечения подшипника) и лежит в плоскости, перпендикулярной оси шарнира (подшипника).

Она эквивалентна двум неизвестным по модулю силам - составляющим этой реакции вдоль соответствующих координатных осей (силы на рис. 15,а; и на рис. 15, б). (Разъяснения по этому поводу см. также в примере на стр. 16).

8. Сферический шарнир (рис. 16, а), подпятник (или радиально-упорный подшипник) (рис. 16, б). Реакция состоит из трех неизвестных по модулю сил - составляющих реакции вдоль осей пространственной системы координат.

9. Жесткая заделка (рис. 17). При действии на тело плоской системы сил полная реакция заделки складывается из силы с составляющими ХА и УА, и пары сил с моментом М, расположенных в той же плоскости, что и действующие силы.

10. Скользящая заделка (рис. 18). В случае плоской системы сил и отсутствия трения реакция состоит из силы N и пары сил с моментом М, расположенных в одной плоскости с действующими силами. Сила N перпендикулярна к направлению скольжения.

Вопросы для самопроверки

1. Что называется абсолютно твердым телом, материальной точкой?

2. Укажите элементы силы. Какими способами можно задать силу?

3. Что называется векторным моментом силы относительно точки Что такое алгебраический момент силы?

4. В каком случае момент силы относительно точки равен нулю?

5. Что называется системой сил? Какие системы сил называются эквивалентными?

6. Что называется равнодействующей системы сил?

7. Дайте определение несвободного твердого тела, связи, реакции связи?

8. Можно ли несвободное тело рассматривать как свободное?

9. На какие две группы делятся силы, действующие на несвободное твердое тело?

Рассмотрим тело, которое может перемещаться без трения по гладкой горизонтальной поверхности (Рис.1а ).

Пусть в качестве активной силы выступает сила веса $\vec{Р}$, приложенная в его центре тяжести. Реакция связи $\vec{N}$ представлена силой, распределенной по плоскости нижней грани этого тела, и ее можно считать приложенной в центре этой грани.

Принципиально картина не меняется, если поверхность тела или связи будет гладкой, но криволинейной (Рис.1б ).

Пусть тело в виде бруса с гладкой поверхностью опирается в точке А на идеально гладкую поверхность, а в точке В – на уступ (Рис.1в ).

Нетрудно догадаться, что тело не сможет находиться в равновесии, если в качестве активной силы выступает его собственный вес, однако равновесие возможно, если к этому брусу приложить некоторую другую внешнюю силу $\vec{F}$. При этом, как будет показано в следующей главе, равновесие возможно только в том случае, если линия действия этой силы проходит через точку пересечения линий действия реакций $R_A$ и $R_B$.

Итак, по поводу этого типа связи можно сделать следующий вывод: реакция идеально гладкой поверхности приложена в точке касания и направлена по нормали к поверхности тела или связи .

2. Гибкая невесомая и нерастяжимая нить. Рассмотрим тело, которое подвешено на двух таких нитях и находится в равновесии под действием собственного веса и реакций нитей, прикрепленных к телу в точках А и В (Рис.2 слева ).

Слева: Гибкая невесомая и нерастяжимая нить

слева )
справа )

Реакция связи равна силе натяжения нити, она направлена вдоль нити и от тела, которое эта нить удерживает.

3. Жесткий невесомый прямолинейный стержень. Реакция направлена вдоль стержня , который, в отличие от нити, может воспринимать как растягивающие ($\vec{S_B}$), так и сжимающие ($\vec{S_A}$) усилия (Рис.2 справа ).

Справа : Жесткий невесомый прямолинейный стержень

Гибкая невесомая и нерастяжимая нить (слева )
Жесткий невесомый прямолинейный стержень (справа )

Допускает перемещение закрепленным таким образом точки тела только вдоль опорной плоскости (Рис.3а ).

Реакция направлена перпендикулярно заштрихованной опорной площадке.

В учебной литературе этот вид связи также называют подвижным цилиндрическим шарниром .

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах эту связь изображают так, как показано на рис.3б .

Отметим, что четыре рассмотренные связи имеют одну общую особенность: соответствующие им реакции известны по направлению и неизвестны по величине. То есть с точки зрения алгебры каждая из этих реакций соответствует только одному неизвестному .

Препятствует перемещению закрепленной таким образом точки тела в горизонтальном и вертикальном направлениях. Это означает, что в общем случае реакция $\vec{R_A}$ такой связи неизвестна по величине и по направлению . В качестве неизвестных при ее определении можно выбрать модуль реакции – $|\vec{R_A}|$ и угол $\varphi$, который она образует с осью Ox , либо проекции вектора $\vec{R_A}$ на оси координат: R AX , R AY (Рис.4а ).

Эта связь допускает поворот тела вокруг рассматриваемой точки, поэтому в учебной литературе эту связь также называют неподвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах она изображается так, как показано на рис.4б .

6. Сферический шарнир. В отличие от цилиндрического шарнира не допускает перемещения закрепленной таким образом точки тела в трех взаимно перпендикулярных направлениях. В качестве неизвестных при ее определении выбирают проекции этой реакции на оси координат: R AX , R AY , R AZ (Рис.5 ).

Основные понятия и аксиомы статики

Статика – учение о силах и условиях равновесия материальных тел, находящихся под действием сил.

Сила – мера механического взаимодействия тел. Совокупность сил, действующих на абсолютно твердое тело, называется системой сил.

Абсолютно твёрдое тело - совокупность точек, расстояния между текущими положениями которых не изменяются, каким бы воздействиям данное тело ни подвергалось.

В статике решаются две задачи :

1. Сложение сил и приведение систем сил, действующих на тело к простейшему виду;

2. Определение условий равновесия действующих на тело систем сил.

Две системы сил называются эквивалентными , если они оказывают одинаковое механическое воздействие на тело.

Система сил называется уравновешенной (эквивалентной нулю), если она не изменяет механического состояния тела (то есть состояния покоя или движения по инерции).

Равнодействующей силой называется одна сила, если она существует, эквивалентная некоторой системе сил.

Силы, линии действия которых пересекаются в одной точке, называют сходящимися .

1. Аксиома о равновесии системы двух сил . Под действием двух сил, приложенных к абсолютно твердому телу, тело может находиться в равновесии тогда и только тогда, когда эти силы равны по величине и направлены вдоль одной прямой в противоположные стороны (рис. 1.1).

Рисунок 1.1

2. Аксиома о добавлении (отбрасывании) системы сил, эквивалентной нулю . Действие данной системы сил на абсолютно твердое тело не

изменится, если к ней прибавить или отнять уравновешенную систему сил (т.е. эквивалентную нулю).

Имеем систему ; добавим 0

Получим { ; }.

Следствие: При переносе силы вдоль её линии действия, действие этой силы на тело не меняется. Из этого следствия вытекает, что сила приложенная к абсолютно твёрдому телу представляет собой скользящий вектор.

Пусть в точке А твердого тела приложена сила (рис.1.2). К этой силе на ее линии действия в точке В в соответствии с аксиомой II добавим систему сил , эквивалентную нулю, для которой . Выберем силу , равную силе .

Рисунок 1.2

Полученная система трех сил эквивалентна, согласно аксиоме о добавлении равновесной системе сил, силе , то есть .

Система сил , согласно аксиоме 1, эквивалентна нулю, и согласно аксиоме 2 ее можно отбросить. Получится одна сила , приложенная в точке В , то есть . Окончательно получаем . Сила приложена в точке А . Она эквивалентна такой же по модулю и направлению силе , приложенной в точке В , где точка В – любая точка линии действия силы . Теорема доказана: действие силы на твердое тело не изменится от переноса силы вдоль линии действия. Силу для твердого тела можно считать приложенной в любой точке линии действия, то есть сила – скользящий вектор. Как скользящий вектор сила характеризуется: численным значением (модулем) ; направлением силы ; положением линии действия силы на теле.

3.Аксиома параллелограмма сил. Две силы , приложенные в одной точке абсолютно твердого тела, имеют равнодействующую силу , приложенную в той же точке и равную геометрической (векторной) сумме этих сил (рис.1.3).

Рисунок 1.3

Следствие: Теорема о трех не параллельных силах: Если под действием трех сил тело находится в равновесии и линии действия двух сил пересекаются, то все силы лежат в одной плоскости и их линии действия пересекаются в одной точке.

Рисунок. 1.4

Положим, что тело находится в равновесии под действием трех сил , 3 , приложенных в точках А, В, С (рис.1.4). По 3 аксиоме равнодействующая первых двух сил может быть найдена по правилу параллелограмма, построенного на силах 1 и 2, перенесенных вдоль линии их действия в точку О пересечения последних, т. е. . Согласно первой аксиоме статики для равновесия тела необходимо и достаточно, чтобы сила 3 была уравновешивающей двух первых сил. Это возможно только в том случае, когда силы и 3 лежат на одной прямой и имеют противоположные направления. Но тогда линии действия сил , 3 пересекутся в одной точке О. Любая из трех данных сил уравновешивает две другие. Выведенное условие равновесия трех не параллельных сил является необходимым, но не достаточным. Если линии действия трех сил пересекаются в одной точке, то отсюда вовсе не следует, что эти три силы представляют собой уравновешенную систему сил.

4. Аксиома о равенстве сил действия и противодействия. При всяком действии одного тела на другое имеет место такое же численно, но противоположное по направлению противодействие (III закон Ньютона). Силы взаимодействия двух тел не составляют систему уравновешенных сил, так как приложены к разным телам.


Рисунок 1.5

5. Аксиома о связях. Материальные объекты (тела и точки), которые ограничивают свободу перемещения рассматриваемого твердого тела, называются связями. Сила, с которой связь действует на тело, препятствуя его перемещению, называется реакцией связи. Реакция связи направлена противоположно возможному перемещению тела. Аксиома связей утверждает, что всякую связь можно отбросить и заменить силой или системой сил (в общем случае), то есть реакциями связи.

6. Аксиома затвердевания. Равновесие деформируемого тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым). Если деформируемое тело находилось в равновесии, то оно будет находиться в равновесии и после его затвердевания.

Основные виды связей и их реакции

Приведем примеры связей для плоской системы сил и их замены силами реакций связей.

1. Гладкая поверхность (рис.1.6,а). Если тело опирается на идеально гладкую поверхность, то реакция поверхности направлена по нормали к общей касательной поверхностей тел в точке соприкосновения.

2. Подвижная шарнирная опора, подвижный шарнир – опора, поставленная на катки, не препятствующие перемещению тела параллельно опорной плоскости. Реакция подвижного шарнира направлена по нормали к поверхности, на которую опираются катки шарнира (рис.1.6,б).

а)
б)


3. Неподвижная шарнирная опора, неподвижный шарнир – совокупность неподвижного валика и надетой на него втулки с твердым телом, вращающимся вокруг оси (подшипник, петля). Реакция неподвижного шарнира проходит через ось валика, в неизвестном направлении, поэтому определяют две ее составляющие, направленные параллельно осям координат, перпендикулярных оси валика (рис. 1.6, в).

4. Жесткая заделка – жестко закрепленная балка, стержень. Связь препятствует любому движению конца балки. Для определения реакции жесткой заделки необходимо определить составляющие главного вектора R А, направленные параллельно осям координат и главный момент М А заделки (рис. 1.6, г).

5. Стержень – жесткий невесомый стержень, концы которого соединены с другими частями конструкции шарнирами. Реакция направлена по линии, проведенной через опорные шарниры стержня (рис. 1.6, д).

6. Гибкая связь – нить, цепь, трос. Реакция приложена к твердому телу в точке соприкосновения и направлена по связи (рис. 1.6, е).

Все теоремы и уравнения статики выво-дятся из нескольких исходных положений, принимаемых без матема-тических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F 1 = F 2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Рис.10

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равнове-сии не может.

Аксиома 2. Действие данной си-стемы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравнове-шенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсо-лютно твердое тело не изменится, если перенести точку при-ложения силы вдоль ее линии действия в любую другую точку тела.

Рис.11

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится. Но силы и со-гласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В резуль-тате на тело. Будет действовать только одна сила , равная , но приложен-ная в точке В .

Таким образом, вектор, изобра-жающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю па-раллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Рис.12

Величина равнодействующей

Рис. 1.3.

Конечно, Такое равен-ство будет соблюдаться только при условии, что эти силы направлены по одной пря-мой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействую-щую, равную геометрической (векторной) сумме этих сил и прило-женную в той же точке.


Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но проти-воположное по направлению противодействие.

Закон о равенстве действия и противодей-ствия является одним из основных законов ме-ханики. Из него следует, что если тело А дей-ствует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 13). Однако силы и не образуют урав-новешенной системы сил, так как они приложены к разным телам.

Рис.13

Аксиома 5 (принцип отвердевания). Равновесие изме-няемого (деформируемого) тела, находящегося под действием дан-ной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сва-ренными друг с другом и т. д.

Связи и их реакции.

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе-ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе - несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь - стол. Тело несвободное. Сделаем его свободным - стол уберем, а чтобы тело осталось в равнове-сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей .

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен-дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри-касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх-ности.

Если поверхности не гладкие, надо добавить еще одну силу - силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен-ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен-дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен-дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле-ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп-ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При-мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото-аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре-небречь. Тогда на стержень будут действовать только две силы при-ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко-торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ-лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо-движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой-дут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско-стей действует система распределенных сил реакций. Считая эти силы приведен-ными к центру А

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

Похожие публикации