Описание клеточного строения кожицы листа. Строение листа растения. Особенности строения листа. Устьица — органы дыхания растения

Лист - это вегетативный орган растений, является частью побега. Функции листа - фотосинтез, испарение воды (транспирация) и газообмен. Кроме этих основных функций, в результате идиоадаптаций к различным условиям существования листья, видоизменяясь, могут служить следующим целям.

  • Накопления питательных веществ (лук, капуста), воды (алоэ);
  • защиты от поедания животными (колючки кактуса и барбариса);
  • вегетативного размножения (бегония, фиалка);
  • улавливания и переваривания насекомых (росянка, венерина мухоловка);
  • движения и укрепления слабого стебля (усики гороха, вики);
  • удаления продуктов обмена веществ во время листопада (у деревьев и кустарников).

Общая характеристика листа растения

Листья у большинства растений зеленые, чаще всего - плоские, обычно двустороннесимметричные. Размеры от нескольких миллиметров (ряска) до 10-15м (у пальм).

Лист формируется из клеток образовательной ткани конуса нарастания стебля. Зачаток листа дифференцируется на:

  • Листовую пластинку;
  • черешок, с помощью которого лист прикрепляется к стеблю;
  • прилистники.

У некоторых растений черешков нет, такие листья в отличие от черешковых называются сидячими . Прилистники также бывают не у всех растений. Они представляют собой различных размеров парные придатки у основания черешка листа. Форма их разнообразна (пленки, чешуйки, маленькие листочки, колючки), функция - защитная.

Простые и сложные листья различают по числу листовых пластинок. Простой лист имеет одну пластинку и отпадает целиком. У сложного на черешке располагается несколько пластинок. Они прикрепляются к главному черешку своими маленькими черешочками и называются листочками. При отмирании сложного листа сначала отпадают листочки, а затем - главный черешок.


Листовые пластинки разнообразны по форме: линейные (злаки), овальные (акации), ланцетовидные (ива), яйцевидные (груша), стреловидные (стрелолист) и т.д.

Листовые пластинки в разных направлениях пронизаны жилками, которые представляют собой сосудисто-волокнистые пучки и придают листу прочность. У листьев двудольных растений чаще всего сетчатое или перистое жилкование, а у листьев однодольных - параллельное или дуговое.

Края листовой пластинки могут быть сплошными, такой лист называется цельнокрайним (сирень) или с выемками. В зависимости от формы выемки, по краю листовой пластинки различают листья зубчатые, пильчатые, городчатые и др. У зубчатых листьев зубцы имеют более или менее равные стороны (бук, лещина), у пильчатых - одна сторона зубца длиннее другой (груша), городчатые - имеют острые выемки и тупые выпуклости (шалфей, будра). Все эти листья называются цельными, так как выемки у них неглубокие, не достигают ширины пластинки.


При наличии более глубоких выемок листья бывают лопастные, когда глубина выемки равна половине ширины пластинки (дуб), раздельные - более половины (мак). У рассеченных листьев выемки доходят до средней жилки или до основания листа (репейник).

В оптимальных условиях роста нижние и верхние листья побегов неодинаковы. Различают низовые, срединные и верховые листья. Такая дифференцировка определяется еще в почке.

Низовые, или первые, листья побега - это чешуйки почек, наружные сухие чешуи луковиц, семядольные листья. Низовые листья при развитии побега обычно опадают. К низовым относят и листья прикорневых розеток. Срединные, или стебельные, листья типичны для растений всех видов. Верховые листья обычно имеют более мелкие размеры, располагаются вблизи цветков или соцветий, бывают окрашены в различные цвета, либо бесцветны (кроющие листья цветков, соцветий, прицветники) .

Типы расположения листов

Существует три основных типа листорасположения:

  • Очередное или спиральное;
  • супротивное;
  • мутовчатое.

При очередном расположении одиночные листья прикрепляются к стеблевым узлам по спирали (яблоня, фикус). При супротивном - два листа в узле располагаются один против другого (сирень, клен). Мутовчатое листорасположение - три и более листа в узле охватывают стебель кольцом (элодея, олеандр).

Любое листорасположение позволяет растениям улавливать максимальное количество света, так как листья образуют листовую мозаику и не затеняют друг друга.


Клеточное строение листа

Лист, как и все другие органы растения, имеет клеточное строение. Верхняя и нижняя поверхности листовой пластинки покрыты кожицей. Живые бесцветные клетки кожицы содержат цитоплазму и ядро, располагаются одним сплошным слоем. Наружные оболочки их утолщены.

Устьица — органы дыхания растения

В кожице находятся устьица - щели, образованные двумя замыкающими, или устьичными, клетками. Замыкающие клетки имеют полулунную форму и содержат цитоплазму, ядро, хлоропласты и центральную вакуоль. Оболочки этих клеток утолщены неравномерно: внутренняя, обращенная к щели, толще, чем противоположная.


Изменение тургора замыкающих клеток меняет их форму, благодаря чему устьичная щель бывает открыта, сужена или полностью закрыта в зависимости от условий окружающей среды. Так, днем устьица открыты, а ночью и в жаркую сухую погоду - закрыты. Роль устьиц заключается в регуляции испарения воды растением и газообмена с окружающей средой.

Устьица располагаются обычно на нижней поверхности листа, но бывают и на верхней, иногда они распределены более или менее равномерно по обе стороны (кукуруза); у водных плавающих растений устьица расположены только на верхней стороне листа. Число устьиц на единице площади листа зависит от вида растений, условий роста. В среднем их 100-300 на 1мм 2 поверхности, но может быть и значительно больше.

Мякоть листа (мезофил)

Между верхней и нижней кожицей листовой пластинки располагается мякоть листа (мезофил). Под верхним слоем находится один или несколько слоев крупных прямоугольных клеток, которые имеют многочисленные хлоропласты. Это столбчатая, или палисадная, паренхима - основная ассимиляционная ткань, в которой осуществляются процессы фотосинтеза.

Под палисадной паренхимой находится несколько слоев клеток неправильной формы с большими межклетниками. Эти слои клеток образуют губчатую, или рыхлую, паренхиму. В клетках губчатой паренхимы содержится меньше хлоропластов. Они выполняют функции транспирации, газообмена и запасания питательных веществ.

Мякоть листа пронизана густой сетью жилок, сосудисто-волокнистых пучков, осуществляющих снабжение листа водой и растворенными в ней веществами, а также отведение из листа ассимилянтов. Кроме того, жилки выполняют механическую роль. По мере отхода жилок от основания листа и приближения их к вершине, они утончаются за счет ветвления и постепенного выпадения механических элементов, затем ситовидных трубок, наконец, трахеид. Мельчайшие разветвления у самого края листа обычно состоят только из трахеид.


Схема строения листа растения

Микроскопическое строение листовой пластинки существенно меняется даже в рамках одной систематической группы растений, в зависимости от разных условий произрастания, прежде всего, от условий освещения и водоснабжения. У растений затененных мест часто отсутствует палисадная перенхима. Клетки ассимиляционной ткани имеют более крупные палисады, концентрация хлорофилла в них выше, чем у светолюбивых растений.

Фотосинтез

В хлоропластах клеток мякоти (особенно столбчатой паренхимы) на свету происходит процесс фотосинтеза. Сущность его заключается в том, что зеленые растения поглощают солнечную энергию и из углекислого газа и воды создают сложные органические вещества. В атмосферу при этом выделяется свободный кислород.

Созданные зелеными растениями органические вещества являются пищей не только для самих растений, но и для животных и человека. Таким образом, жизнь на земле зависит от зеленых растений.

Весь кислород, содержащийся в атмосфере, имеет фотосинтетическое происхождение, он накапливается за счет жизнедеятельности зеленых растений и его количественное содержание благодаря фотосинтезу поддерживается постоянным (около 21%).

Используя углекислый газ из атмосферы для процесса фотосинтеза, зеленые растения тем самым очищают воздух.

Испарение воды листьями (транспирация)

Кроме фотосинтеза и газообмена в листьях происходит процесс транспирации - испарения воды листьями. Основную роль в испарении выполняют устьица, частично в этом процессе принимает участие и вся поверхность листа. В связи с этим различают устьичную транспирацию и кутикулярную - через поверхность кутикулы, покрывающей эпидермис листа. Кутикулярная транспирация значительно меньше устьичной: у старых листьев 5-10% общей транспирации, однако у молодых листьев, имеющих тонкую кутикулу, может достигать 40-70%.

Поскольку транспирация осуществляется в основном через устьица, куда проникает и углекислый газ для процесса фотосинтеза, существует взаимосвязь между испарением воды и накоплением сухого вещества в растении. Количество воды, которое испаряется растением для построения 1г сухого вещества, называется транспирационным коэффициентом . Величина его колеблется от 30 до 1000 и зависит от условий роста, вида и сорта растений.

На построение своего тела растение использует в среднем 0,2% пропускаемой воды, остальная расходуется на терморегуляцию и транспорт минеральных веществ.

Транспирация создает сосущую силу в клетке листа и корня, поддерживая тем самым постоянное передвижение воды по растению. В связи с этим листья получили название верхнего водяного насоса в отличие от корневой системы - нижнего водяного насоса, который нагнетает воду в растение.

Испарение защищает листья от перегревания, что имеет большое значение для всех процессов жизнедеятельности растения, особенно - фотосинтеза.

Растения засушливых мест, а также в сухую погоду испаряют больше воды, чем в условиях повышенной влажности. Регулируется испарение воды кроме устьиц защитными образованиями на кожице листа. Эти образования: кутикула, восковой налет, опушение из различных волосков и др. У растений-суккулентов лист превращается в колючки (кактусы), а его функции выполняет стебель. Растения влажных мест обитания имеют крупные листовые пластинки, на кожице нет защитных образований.


Транспирация — механизм испарения воды листьями растения

При затрудненном испарении у растений наблюдается гуттация - выделение воды через устьица в капельно-жидком состоянии. Это явление происходит в природе обычно утром, когда воздух приближается к насыщению водяными парами, или перед дождем. В условиях лаборатории гуттацию можно наблюдать, накрыв молодые проростки пшеницы стеклянными колпаками. Через короткий срок на кончиках их листьев появляются капельки жидкости.

Система выделения — опадание листьев (листопад)

Биологическим приспособлением растений к защите от испарения является листопад - массовое опадение листьев на холодное или жаркое время года. В умеренных зонах деревья сбрасывают листья на зиму, когда корни не могут подавать воду из замерзшей почвы, а мороз иссушает растение. В тропиках листопад наблюдают в сухой период года.


Подготовка к сбрасыванию листьев начинается при ослаблении интенсивности жизненных процессов в конце лета - начале осени. Прежде всего происходит разрушение хлорофилла, другие пигменты (каротин и ксантофилл) сохраняются дольше и придают листьям осеннюю окраску. Затем у основания черешка листа паренхимные клетки начинают делиться и образуют отделительный слой. После этого лист отрывается, а на стебле остается след - листовой рубец. Ко времени листопада листья стареют, в них скапливаются ненужные продукты обмена веществ, которые удаляются из растения вместе с опавшими листьями.

Все растения (обычно это деревья и кустарники, реже - травы) делятся на листопадные и вечнозеленые. У листопадных листья развиваются в течение одного вегетационного сезона. Ежегодно с наступлением неблагоприятных условий они опадают. Листья вечнозеленых растений живут от 1 до 15 лет. Отмирание части старых и появление новых листьев происходит постоянно, дерево кажется вечнозеленым (хвойные, цитрусовые).

Строение кожицы листа Верхняя кожица (эпидерма) – покровная ткань на обращённой стороне листа, часто покрытая волосками, кутикулой, воском. Снаружи лист имеет кожицу (покровную ткань), которая защищает его от неблагоприятных воздействий внешней среды: от высыхания, от механических повреждений, от проникновения к внутренним тканям болезнетворных микроорганизмов. Клетки кожицы живые, по размерам и форме они разные. Одни из них более крупные, бесцветные, прозрачные и плотно прилегают друг к другу, что повышает защитные качества покровной ткани. Прозрачность клеток позволяет проникать солнечному свету внутрь листа.

Другие клетки более мелкие, в них имеются хлоропласты, придающие им зелёный цвет. Эти клетки располагаются парами и обладают способностью изменять свою форму. При этом клетки или отдаляются друг от друга, и между ними появляется щель, или приближаются друг к другу и щель исчезает. Эти клетки назвали замыкающими, а возникающую между ними щель – устьичной. Устьице открывается, когда замыкающие клетки насыщены водой. При оттоке воды из замыкающих клеток устьице закрывается.

Строение устьица Через устьичные щели воздух поступает к внутренним клеткам листа; через них же газообразные вещества, в том числе и пары воды, выходят из листа наружу. При недостаточном обеспечение растения водой (что может случиться в сухую и жаркую погоду), устьица закрываются. Этим растения защищают себя от иссушения, так как водяные пары при закрытых устьичных щелях не выходят наружу и сохраняются в межклетниках листа. Таким образом, растения сохраняют воду в засушливый период.

Основная ткань листа Столбчатая ткань – основная ткань, клетки которой имеют цилиндрическую форму, плотно прилегают друг к другу и расположены с верхней стороны листа (обращённой к свету). Служит для фотосинтеза. Каждая клетка этой ткани имеет тонкую оболочку, цитоплазму, ядро, хлоропласты, вакуоль. Наличие хлоропластов придаёт зелёный цвет ткани и всему листу. Клетки, которые прилегают к верхней кожице листа, вытянуты и расположены вертикально, называют – столбчатой тканью.

Губчатая ткань – основная ткань, клетки которой имеют округлую форму, расположены рыхло и между ними образуются крупные межклетники, также заполненные воздухом. В межклетниках основной ткани накапливаются пары воды, поступающие сюда из клеток. Служит для фотосинтеза, газообмена и транспирации (испарения).

Количество слоёв клеток столбчатой и губчатой тканей зависит от освещения. В листьях выросших на свету, столбчатая ткань развита сильнее, чем у листьев, выросших в условиях затемнения.

Проводящая ткань – основная ткань листа, пронизанная жилками. Жилки – это проводящие пучки, так как они образованы проводящими тканями – лубом и древесиной. По лубу осуществляется передача растворов сахара из листьев ко всем органам растения. Движение сахара идёт по ситовидным трубкам луба, которые образованы живыми клетками. Эти клетки вытянуты в длину, и в том месте, где они соприкасаются друг с другом короткими сторонами в оболочках, имеются небольшие отверстия. Через отверстия в оболочках раствор сахара переходит из одной клетки в другую. Ситовидные трубки приспособлены к передаче органического вещества на большое расстояние. Плотно по всей длине к боковой стенке ситовидной трубки прилегают живые клетки меньших размеров. Они сопутствуют клеткам трубки, и их называют клетками спутницами.

Жизнедеятельность листа Зелёные листья – органы воздушного питания. Зелёный лист выполняет важную функцию в жизни растений – здесь образуются органические вещества. Строение листа хорошо соответствует этой функции: он имеет плоскую листовую пластинку, а в мякоти листа содержится огромное количество хлоропластов с зелёным хлорофиллом.

Видоизменения листьев В процессе приспособления к условиям окружающей среды листья у некоторых растений видоизменились потому, что стали играть роль не свойственную типичным листьям. У барбариса часть листьев видоизменились в колючки.

Старение листьев и листопад Листопаду предшествует старение листьев. Это значит, что во всех клетках снижается интенсивность жизненных процессов – фотосинтеза, дыхания. Уменьшается содержание уже имеющихся в клетках важных для растения веществ и сокращается поступление новых, в том числе и воды. Распад веществ преобладает над их образованием. В клетках накапливаются ненужные, и даже вредные продукты, их называют конечными продуктами обмена веществ.

У большинства деревьев и кустарников в период старения листья меняют окраску и становятся жёлтыми или багряными. Это происходит потому, что хлорофилл разрушается. Но помимо него в пластидах (хлоропластах) имеются вещества желтого и оранжевого цвета. Летом они были, как бы замаскированы хлорофиллом и пластиды имели зелёный цвет. Кроме того, в вакуолях накапливаются другие красящие вещества жёлтого или красно-малинового цвета. Вместе с пигментами пластид они определяют окраску осенних листьев. У некоторых растений листья сохраняют зелёный цвет до отмирания.

Ещё до того как с побега упадёт лист, в его основании на границе со стеблем формируется слой пробки. Наружу от него образуется отделительный слой. Со временем клетки этого слоя оделяются друг от друга, так как ослизняется и разрушается межклеточное вещество, которое их соединяло, а иногда и оболочки клеток. Лист отделяется от стебля. Однако некоторое время он ещё сохраняется на побеге благодаря проводящим пучкам между листом и стеблем. Но наступает момент нарушения и этой связи. Рубец на месте отделившегося листа покрыт защитной тканью, пробкой.

Значение листопада Осенний листопад в лесу имеет важное биологическое значение. Опавшие листья – хорошее органическое и минеральное удобрение. Ежегодно в на их лиственных лесах опавшие листья служат материалом для минерализации, производимой почвенными бактериями и грибами. Кроме того, опавшая листва стратифицирует семена, опавшие до листопада, предохраняет корни от вымерзания, препятствует развитию мохового покрова и т. д. некоторые виды деревьев сбрасывают не только листву, но и годовалые побеги.

Человек с трудом может представить, что клеточное строение листа – это сложная система. Любой организм живой природы состоит из мельчайших клеточек.

Каждая их группа имеет свои особенности, выполняет определенные функции и отвечает за определенные процессы.

Какие клетки образуют листовую пластину

В анатомии листовой пластины есть множество клеток, различных по форме и размеру.

Сверху и снизу находится кожица – эпидермис. Внутри размещена мякоть. На нижней поверхности имеются устьица.

Какую функцию выполняют жилки листа

Жилкование – это вид распределения жилок по листу. Жилки – это трубки в листьях. Они выполняют 2 функции – проводящую и опорную. В первом случае их можно сравнить с кровеносными сосудами человека. Они разносят вещества по всему организму.

Жилки бывают 2-х видов: ситовидные трубки и сосуды. По ситовидным трубкам от листьев к другим органам движутся вещества, образованные путем фотосинтеза .

По сосудам от корней из земли в другие части растения попадают растворенные в воде минеральные вещества. Иногда сосуды называют древесиной, а ситовидные трубки лубом.

По жилкованию листья разделяют на несколько типов. Ниже представлена таблица с примерами и кратким описанием.

Тип жилкования Пояснение Пример
Перистое В середине находится главная жилка, от которой отходят боковые. Камелия, яблоня, береза
Дуговидное Главные жилки образуют дуги от одного края до другого. Жилки второго порядка являются поперечными. Подорожник, ландыш
Пальчатое Главные жилки отходят от одной точки у основания листа. Кленовый лист, герань
Параллельное Главные жилки идут от основания до конца листа почти параллельно. Тростник, пшеница
Вильчатое или дихотомическое Все жилки выглядят одинаковыми по толщине. Папоротник

Сами трубки покрыты механической тканью, которая выполняет защитную функцию.

Какое строение имеют клетки мякоти листа

Мякоть состоит из 2-х типов клеток. Они образуют столбчатую и губчатую ткани.

Столбчатая расположена в верхней части. Она представляет собой ряды столбиков, плотно прижатых друг к другу.

Губчатая ткань находится ниже. Она имеет рыхлую структуру и содержит много пространства, заполненного воздухом. Эти пространства называют межклетниками. Через губчатую ткань испаряется вода, и происходит газообмен.

Обратите внимание: у листьев, находящихся в хорошей освещенности, больше слоев столбчатой ткани и лучше развита губчатая ткань, чем у листьев теневых растений.

В каких клетках листа особенно много хлоропластов

Хлоропласты представляют собой двумембранные пластиды зеленого цвета, слегка расплющенные в длине. Их размер может варьироваться от 2 мкм до 50 мкм.

В этих пластидах содержится хлорофилл. Он играет важную роль в процессе фотосинтеза, в результате которого выделяется кислород. Больше всего хлоропластов содержится в столбчатой ткани, т. к. она находится на поверхности, а значит, лучше всего освещена. На свету и происходит фотосинтез.

У высших растений в составе одной клетки может содержаться от 10 до 30 пластид. Однако, большое количество хлоропластов не входит в состав водорослей. У них бывает один хлоропласт на одну клетку. Но есть удивительные исключения. В клетках палисадной ткани махорки обнаружено около 1000 пластид.

Какое значение имеет кожица листа

Кожица – это наружный слой. Она защищает от высыхания и повреждения. Кожицу можно легко подцепить иглой и снять. Тогда будет возможность увидеть, что она прозрачная. Благодаря этому свет легко проникает внутрь.

Сверху кожицы находится восковой слой. Он нужен для предотвращения потери воды. Чем толще восковой слой, тем меньше будет испаряться воды.

Рисунок и описание внутреннего строения листа

Здесь представлен срез листа. На схеме хорошо видны клетки кожицы и мякоти.

Свойства клеток устьица листа

В нижней части в нескольких местах кожицы образованы небольшие отверстия, расположенные между замыкающими клетками. Это отверстие называются устьицем. Оно является форточкой листа.

Замыкающие клетки периодически открываются и закрываются, благодаря чему происходит газообмен и испарение воды. При недостатке влаги устьице закрыто, и открывается оно только с поступлением воды.

Количество устьиц на поверхности листа огромно. Оно может достигать 500 только на 1 кв. мм.

У растений, живущих на поверхности воды, устьица расположены на верхней части листа. У большинства наземных растений – на нижней. Но встречаются и такие растения, у которых устьица находятся и наверху, и внизу. К ним относятся дуб, берёза, липа, ромашка, паприка, шалфей и др.

Из представленной статьи мы узнали, каково строение листа. Благодаря слаженной работе всех клеток и работе каждой отдельной клетки, образуется кислород, которым мы дышим.

Судя по схематическому рисунку, внутреннее строение листа не очень сложное. Вообще как внешние строения листьев, так и внутренние могут отличаться друг от друга в зависимости от различных условий (уровень влаги, различные раздражители и т. д.) и вида растений, которым они принадлежат, но у них есть и общие черты (т.к. все листья выполняют примерно одинаковые функции).

Предназначение листьев

Листья - это органы растений, значение которых - реализация фотосинтеза, транспирация и газообмен. Как правило, у растений есть определенное листорасположение, их существует три типа схемы жилкования , которые знают многие:

  • спиральное или очередное (листорасположение дуба, пшеницы, березы);
  • супротивное (такое листорасположение характерно для клена, подорожника или сирени);
  • мутовчатое (встречается у таких растений, как ландыш, олеандр или уруть);

Значение и строение листа могут частично меняться у разных растений в зависимости от условий, в которых они растут (избыточная влага или ее недостаток). Листья обладают высокой пластичностью, это нужно для защиты от внешних повреждений. Листовой край может быть различной формы, например, дуговой. Лист покрыт кожицей, которая охарактеризует внутреннюю взаимосвязь и выполняет защитную и некоторые другие функции из-за своих свойств.

Кожица и что она представляет

Кожица листа или эпидерма - это ткань листа , которая обычно покрыта кутикулами, волосками и воском. Кожица защищает лист от различных повреждений и прочих негативных взаимодействий с внешней средой (высыхание, различные микроорганизмы и т. д.). По своему строению кожица листа не очень сложна в сравнении с мякотью, но имеет свои особенности. Клетки эпидермы бывают разными по размеру, форме и уровню прозрачности. Чем более прозрачен лист, тем больше он забирает света, это зависит от места обитания растения (света может быть слишком много, это может повредить лист).

Другие клетки - замыкающие. Они содержат в себе хлоропласты (это то, что дает листу зеленый цвет и осуществляет фотосинтез). Такие клетки могут менять форму, чтобы отдалиться друг от друга. Пустое пространство между замыкающими клетками называется устьицем. Устьице нужно, чтобы контролировать газообмен и испарение воды.

Принцип работы устьица

Клетки устьица имеют утолщенную пластинку со стороны пустого пространства. Процесс фотосинтеза в устьицах проходит только на свету. Сахар, который образуется увеличивает концентрацию сока в клетках, вследствие этого (по закону Осмоса) вода поступает в замыкающие клетки. Из-за давления клетки начинают разбухать и увеличивать свой объем.

Вследствие этого клетки тянутся в сторону более тонкой эпидермы, а толстые - за всей остальной клеткой. В результате всего этого устьице приходит в открытое состояние. А когда свет не падает на эти клетки и процесс фотосинтеза не происходит, устьице приходит в исходное положение, то есть закрывается.

Фотосинтез - это способность клеток растений синтезировать (создавать) органические вещества из различных неорганических веществ, используя солнечную энергию. Как правило, при фотосинтезе растения используют хлоропласты, которые содержат в себе хлорофилл (пигмент, который дает зеленый окрас).

Все живые остальные живые существа обязаны растениям, ведь грибы, подавляющее число бактерий и животные не обладают способностью к фотосинтезу. Остальные просто поглощают сложные органические вещества, разбирают их по средствам пищеварение и используют.

Выше было приведено слишком простое определение, но, чтоб иметь полную картину, надо чуть подробнее разобраться, какие же вещества используют растения и как проходит этот процесс.

При фотосинтезе растения используют углекислый газ (СО2) и воду (Н20 ), углекислый газ растения берут из воздуха через устьица, а воду - из-под земли. Все эти вещества растение посредством жилок и прочих составляющих проводящей ткани переносит в фотосинтезирующие клетки (еще для фотосинтеза нужна энергия солнца, но фотоны - это не вещество).

Как правило, продуктами фотосинтеза являются органические вещества (обычно С6Н12О6, то есть глюкоза) и кислород (О2).

Органика состоит из таких соединений, как углерод C, водород (Н2) и кислород (О2). Все эти элементы содержат в себе вода и углекислый газ. Кстати, кислород, которым дышат все живые существа, выделяется при фотосинтезе, растения берут его из воды.

Реакцию фотосинтеза записывают так:

6CO2 + 6H2O → C6H12O6 + 6O2

Это уравнение может сделать этот процесс более простым, но не дает понять его до конца. Хоть все элементы в уравнение сбалансированы, но тут количество атомов кислорода равно двенадцати, а молекул воды только шесть.

Дело в том, что данный процесс имеет несколько фаз, а именно две: световую и темновую. Как можно понять из названий, фотоны необходимы лишь первой фазе, второй фазе не нужен свет, но эта фаза необязательно проходит ночью. Мембраны тилакоидов хлоропластов - нужны для протекания первой фазы, а для второй нужен стром хлоропласта.

Во время первой фазы солнечная энергия удваивается при помощи хлорофилльных комплексов, которые запасают ее в АТФ и происходит восстановление НАДФ*Н2 из НАДФ при помощи полученной энергии. Энергию от хлорофиллов обеспечивают электроны, которые передает электрон-транспортная цепь ферментов, встроенных в мембраны тилакоидов.

Нужный для НАДФ водород добывается из Н2О разлагаемого на кислород, протоны Н2 и электроны (кислород (О2), который остается после этого процесса не используется для фотосинтеза). Все это называют фотолизом. Оставшийся после реакци кислород в виде атомов соединяется до молекул кислорода (О2). Фотолиз в виде уравнения записывают следующим образом:

H2O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H2 + ½O2

Исходя из этого становится понятно, что синтез кислорода проходит во время первой фазы . Молекул АТФ, которые были использованы во время этого процесса, для разложения одной молекулы Н2О обычно используется одна или две. Темновая фаза проходит совсем иначе.

Во время первой фазы были получены молекулы АТФ и НАДФ*Н2. В процессе этой фазы энергия, получаемая из АТФ, используется НАДФ*Н2 как восстановитель, связывая углекислый газ. Это довольно сложный этап, он проходит не совсем так, как будет показана на реакции, но так обычно записывают (это проще для понимания):

6CO2 + 6НАДФ*H2 →С6H12O6 + 6НАДФ

Во время реакции используется АТФ, которая выполняет энергетическую функцию.

Данная реакция не передает всей сути темновой фазы, но считается правильной. Дело в том, что углекислый газ связывается по одной молекуле, данная связь соединяется с готовым 5-ти углеродным органическим веществом. Это дает 6-ти углеродное вещество с очень нестабильной связью, это 6-ти углеродное вещество распадается на 3-х углеродные молекулы. Несколько таких молекул идут на ресинтез 5-ти углеродного органического вещества, чтобы связать молекулы СО2. Остальная часть 3-х углеродных молекул не участвует в этом процессе. Эти молекулы используют для синтеза белков, жиров и углеводов.

Во время второй фазы фотосинтеза производится не глюкоза, а 3-х углеродные углеводы.

Основная ткань листа - это то, что находится под кожицей, то есть мякоть. Основную ткань разделяют на несколько видов:

То, каким будет строение листа растения, какое количество слоёв губчатой и столбчатой тканей образуется, зависит от освещения. У выросших на свету листьев столбчатая ткань гораздо сильнее развита, чем у тех, что росли в условиях затемнения.

Лист, как и все органы растения, имеет клеточное строение и состоит из различных . Его строение обусловлено уникальной способностью производить на свету органические вещества.

Строение кожицы и мякоти листа

Строение жилок листа

Все органы растений имеют проводящие ткани. В листьях они образуют проводящие пучки жилки. По ситовидным трубкам жилок из листьев движутся органические вещества, по сосудам в листья поступает вода и минеральные соли. В состав проводящих пучков входят . Они придают жилкам прочность.

Типы жилкования листьев

Прохождение жилок в называют жилкованием.

Различают несколько типов жилкования:

  • параллельное - крупные жилки проходят параллельно друг другу (пшеница, рогоз);
  • сетчатое - посередине листовой пластинки проходит мощная главная жилка, а от нее отходят более тонкие боковые; взаимное расположение жилок напоминает перо птицы (сирень, крапива);
  • дуговое - каждая жилка, кроме центральной, изогнута дугой (ландыш, подорожник);
  • вильчатое - жилки располагаются вдоль листа, одна жилка разветвляется на две, и они не пересекаются ( , гинкго и другие древние растения).

Световые и теневые листья

У растений, обитающих в условиях хорошей освещенности, листья содержат несколько слоев столбчатых клеток. Хорошо развита в них и губчатая ткань. Такие листья называют световыми. У теневыносливых растений листья имеют но одному слою мелких столбчатых клеток, и губчатая ткань у них менее развита. Такие листья называют теневыми. Таким образом, листовые пластинки у световых листьев толще, чем у теневых, однако в теневых листьях хлоропласты крупнее и содержат больше хлорофилла. Поэтому они и имеют темно-зеленую окраску. Световые листья - светло-зеленые, так как в них содержится меньше хлорофилла. Световые и теневые листья отличаются размерами. В лесах растения имеют крупные листья, которые улавливают больше света.

Похожие публикации